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We study the decay of survival probability at quantum phase transitions with infinitely degenerate ground
levels at critical points. For relatively long times, the semiclassical theory predicts power-law decay of the
survival probability in systems with d=1 and exponential decay in systems with sufficiently large d, where d
is the degrees of freedom of the classical counterpart of the system. The predictions are checked numerically
in four models.
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I. INTRODUCTION

A quantum phase transition �QPT� is characterized by
nonanalyticity of the ground level of the system at the criti-
cal point in the large size limit. At a QPT, certain fundamen-
tal properties of the ground-state �GS� change drastically un-
der small variation of a controlling parameter, e.g., strength
of a magnetic field. Most of the works in QPT have focused
on properties of equilibrium states �including GS at zero
temperature� �1�. While, the nonanalyticity influences in fact
both equilibrium and nonequilibrium properties. Indeed,
when the time scale of interest is smaller than the relaxation
time, which diverges at the critical point, usually the system
is not in an equilibrium state and unitary dynamics should be
considered �Fig. 1�. Due to significant progress in cold atom
experiments, time dependent simulation of models undergo-
ing QPT is becoming realizable �2,3�; hence, investigation in
the unitary dynamics at QPT is of interest both theoretically
and experimentally. For example, resorting to theoretical
technique such as a quantum version of the Kibble-Zurek
theory �4,5�, it has been shown that slow change of the con-
trolling parameter passing the critical point may induce some
intriguing effects �6�.

In this paper, we study a different dynamics at QPT,
which is induced by a sudden small change in the controlling
parameter, �→��, in the vicinity of a critical point �c. A
measure of the effect of this dynamics is the survival prob-
ability �SP� of an initial state prepared in the GS �0�� of
H���,

M�t� = ��0��e−iH����t/��0���2. �1�

The SP, sometimes called autocorrelation function, is a quan-
tity accessible experimentally �7�. Recent it was found that
relatively significant and fast decay of the SP may indicate
the position of QPT �8–10�, which has been demonstrated
experimentally �11�. Short time decay of the SP has been
studied in these works. Of further interest, while still un-
known, is the law for relatively long-time decay of the SP at
QPT and whether it may be useful in revealing characteristic
properties of QPT �12,13�.

To find an answer to the above question, here we focus on
those QPT, at the critical points of which the ground levels

have infinite degeneracy in the large size limit. This is a type
of QPT met in many cases �see models discussed below and
those in Ref. �1��. At such a QPT, the nonanalyticity may be
a consequence of avoided crossings of infinite levels, not a
few levels.

We find that the semiclassical theory may be used in the
study of the SP decay when �� is sufficiently close to �c. The
theory predicts a power-law decay of the SP in some systems
and an exponential decay in some other systems. Numerical
results obtained in four models confirm these predictions.

II. SEMICLASSICAL APPROACH

We first discuss a condition for the applicability of the
semiclassical theory in the study of the SP of GS. We use
notations: �=��−� , �=��−�c , ��=�−�c �Fig. 1�, and
�=� /��. We use ���� with �=0,1 , . . . to denote eigenstates
of H��� with eigenenergies E���� in increasing energy order.
When the ground level of H��c� is infinitely degenerate and
those of H���� are nondegenerate �or have finite degen-
eracy�, infinitely many low-lying levels of H���� must join
its ground level in the limit ��→�c, i.e.,

lim
��→�c

E����� = E0��c�, for many � . �2�

This has two consequences: �i� H���� of �� sufficiently close
to �c must have a high density of states near its ground level.
�ii� For a fixed � near �c, when �� is sufficiently close to �c,
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FIG. 1. A schematic plot, where � is the time scale of interest
and �r is the relaxation time, � is a controlling parameter with
critical value �c of a QPT. Below the solid curves, �	�r, the system
is usually not in an equilibrium state and its unitary dynamics
should be considered.
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H���� may have many levels below Ē, where

Ē= �0��H�����0��; i.e., the initial state �0�� may have a rela-
tively high mean energy in the system H����. This is in
agreement with a property revealed in recent study of the
fidelity of GS near critical points, which has close relation-
ship to the SP, namely, for a fixed small �, the overlap
��0� �0���� decreases significantly when �� approaches �c
�14�.

Moreover, suppose the system has a classical counterpart
in the low energy region. Here, a classical counterpart means
a classical system, the quantization of which gives a system
mathematically equivalent to the original quantum system;
its components are not required to be directly related to com-
ponents of the original system. Property �2� implies that in
the process ��→�c longer and longer trajectories in the clas-
sical system may be of relevance. For a fixed initial state
�0��, one may assume that the initial value of the Lagrangian
L does not change notably in this process. Then, trajectories
of relevance may have large action S=�0

t Ldt� for �� suffi-
ciently close to �c.

The above discussed properties for �� sufficiently close to

�c, namely, high density of states, relative highness of Ē, and
large action of some relevant classical trajectories, imply that
a semiclassical approach may be valid. To be specific, for
any given � near �c, it is reasonable to expect that the semi-
classical theory may be used in the study of the SP when ��
is sufficiently close to �c.

According to the semiclassical theory, qualitative differ-
ence in classical trajectories may have quantum manifesta-
tion. Specifically, in the case of d=1 where d is the degree�s�
of freedom of the classical counterpart in the configuration
space, the classical motion may show periodicity within a
time scale of interest; on the other hand, for a large d, even in
a regular system, classical trajectories may show no signa-
ture of periodicity within times of practical interest. This
difference suggests that the SP decay in the former case may
be slower than in the latter case, which we discuss below.

We consider small �, such that H����=H���+�V, with
V	 dH���

d� . The SP of the GS of H��� is a special case of the
so-called quantum Loschmidt echo or �Peres� fidelity �15�,
ML�t�= �m�t��2, where

m�t� = �
0�exp�iH����t/��exp�− iH���t/���
0� . �3�

In studying the SP, one may employ a semiclassical approach
that has been found successful in the study of Loschmidt
echo �16–23�. For an initial Gaussian wave packet, narrow in
the coordinate space with width � and centered at �r̃0 , p̃0� in
the phase space, using the semiclassical Van Vleck-
Gutzwiller propagator, it has been shown that �16,18�

msc�t� 	 ��w2�−d/2
 dp0 exp� i

�
�S −

�p0 − p̃0�2

w2 � �4�

for small �, which works in both regular and chaotic cases
�18,23�. Here, �S is the action difference between two
nearby trajectories in the two systems starting at �p0 , r̃0� and
approximately can be evaluated along one trajectory,
�S	��0

t dt�V�r�t�� ,p�t��� �16�. The quantity w is � /� for
sufficiently small � and depends on both � and the local

instability of the classical trajectory when � is not very small
�20�.

We first discuss the SP in the case of d=1 with a regular
dynamics. We assume that the GS can be �approximately�
written as a Gaussian wave packet in certain coordinate of
the classical counterpart. This is possible, e.g., in the models
discussed below. In this case, as shown in Ref. �23�, for
tT, due to the periodicity of the classical motion, the main
contribution of �S to the SP is given by its average part �Ut,
where U= 1

T�0
TV�t�dt and T is the period of the classical mo-

tion in H���. Upto the first-order expansion of U in p0, Eq.
�4� predicts a Gaussian decay of the SP �21,23�. For rela-
tively long times, higher order terms of U induces power-law
decay of the SP �23,24�. For example, to the second-order
term,

M1�t� 	 c0�1 + �2t2�−1/2e−�t2/�1+�2t2�, �5�

where c01, �= � �w
�

�Ũ
�p0

�2 /2, �= � �w2

2�
�2Ũ
�p0

2 �, with tilde indicating
evaluation at p̃0 �23�. It is seen that M1 has a Gaussian decay
e−�t2 for initial times and has a 1 /�t decay for long times.

Next, we consider the case of a regular classical counter-
part with large d. In this case, the underlying classical mo-
tion is typically quasiperiodic with many different frequen-
cies, as a result, T is usually much longer than time scales of
practical interest. For times t�T, classical trajectories may
look random in the torus, due to the difference in the fre-
quencies. To calculate the SP in this case, one may write it in
terms of the distribution P��S� of �S �with the Gaussian
weight taken into account�, Msc�t�	��d�Sei�S/�P��S��2.
When the trajectories can be effectively regarded as random
walks for times t�T due to the many frequencies, P��S� is
close to a Gaussian distribution, independent of the initial
state. In this case, the SP can be calculated in the same way
as in a chaotic system �17�, which has an exponential decay
determined by the variance of �S,

M2�t� 	 e−Ks�
2t/�2

, �6�

where

Ks 	
1

t
��
 Vdt�2

− �
 Vdt�2� , �7�

with �Vdt=�0
t dt�V�r�t�� ,p�t��� �25�.

To summarize, for small � and sufficiently small �, and
for relatively long times, the SP may have a power-law decay
when d=1, and has the exponential decay M2�t� when d is
sufficiently large. We remark that, for � far from �c, the SP is
always close to 1 for small �.

III. NUMERICAL SIMULATIONS

The first model we study is the single-mode Dicke model
�26�, describing the interaction between a single bosonic
mode and a collection of N two-level atoms. In terms of
collective operators J for the N atoms, the Dicke Hamil-
tonian is written as �hereafter we take �=1� �27�,
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H = �0Jz + �a†a + ��/�N��a† + a��J+ + J−� . �8�

In the limit N→�, the system undergoes a QPT at
�c= 1

2
���0, with a normal phase for �	�c and a super-

radiant phase for ��c. The Hamiltonian can be diagonal-
ized in this limit,

H��� = �
k=1,2

ek�ck�
† ck� + g , �9�

where ck�
† and ck� are bosonic creation and annihilation op-

erators, ek� are single quasiparticle energies, and g is a
c-number function �27�. To be specific, in the normal phase,

ek�
2 =

1

2
��2 + �0

2 + �− 1�k���0
2 − �2�2 + 16�2��0� . �10�

It is seen that e1�c
=0; hence, the ground level of H��c� is

infinitely degenerate. Since e2�c
=��2+�0

2 is finite, at the
QPT one may consider the effective Hamiltonian
Heff���=e1�c1�

† c1� with d=1. Direct calculation shows

e1�	A����1/2, with A=
2���0�3/4

��2+�0
2 , and

V = −
A2

2e1�

�c1�
† c1� + 2�c1�

† �2 + 2c1�
2 �  ����−1/2. �11�

The semiclassical result �Eq. �5�� predicts that the SP has
a Gaussian decay followed by a power-law decay, with scal-
ing properties

� 
�2

����−1 = ����, �  ����1/2. �12�

These predictions have been confirmed in our numerical
simulations �Fig. 2�. Numerically, the SP was calculated by
making use of relations between �ck�

† ,ck�� and �ck��
† ,ck���,

which can be directly derived from formulas given in Ref.
�27�. Our numerical results support the prediction that the
semiclassical theory may work for sufficiently small ���.
Similar results have also been found in the super-radiant
phase.

The second model we have studied is the LMG model
�28�, with the Hamiltonian H=− 1

N �Sx
2+�Sy

2�−�Sz, which has
a critical point at �c=1 �29�. The model has a classical coun-
terpart with d=1. Direct computation shows a 1 / t decay of
the SP for relatively long times in the neighborhood of �c
�30�.

As a third model, we study a one-dimensional Ising chain
in a transverse field,

H��� = − �
i=1

N

�i
z�i+1

z + ��i
x. �13�

The Hamiltonian can be diagonalized by using
Jordan-Wigner and Bogoliubov transformations, giving
H���=�kek�bk

†bk−1 /2� �1�. Here, bk
† and bk are creation and

annihilation operators for fermions and ek are single quasi-
particle energies,

ek = 2�1 + �2 − 2� cos�ka� �14�

with lattice spacing a, where k= 2�m
aN with

m=−M ,−M +1, . . . ,M and N=2M +1. Note that �ka� in Eq.
�14� is in fact independent of the lattice spacing a, with
ka=2�m /N.

To understand the degeneracy property of the ground
level in the large N limit, let us consider those m satisfying
�m�	N� for large N, where �� �0,1� is an arbitrary number
independent of N. In the limit N→�, one has ka→0 for
these m. As a result, Eq. �14� gives ek=2���� with �c=1, in
particular, at the critical point �=�c, ek=0 for these modes
m. The number of these modes m is infinitely large in the
limit N→�; hence, the ground level is infinitely degenerate.

In a sufficiently low-energy region and for �	�c, a clas-
sical counterpart of the system can be introduced as follows.
For �=�c, ek	4��m� /N for sufficiently large N and small
�m�. In the low-energy region, due to this linear dependence
of ek on m, using the method of bosonization �see Ref. �1��,
one can express fermionic states bk1

† . . .bkn

† �vacuum� in terms
of �many� bosonic modes. Each bosonic mode has a classical
counterpart with one degree of freedom, hence, H��c� has a
classical counterpart in the low energy region with a large
value of d �d→� in the large N limit�. This implies that
H��� with �	�c also has a classical counterpart with large
d, as a result, typically the SP should have an exponential
decay M2�t� in Eq. �6�.

Direct derivation shows that the perturbation in this model
is

V =
� − cos ka

ek/4
�bk

†bk −
1

2
� +

sin ka

ek/2
i�bkb−k − bk

†b−k
† � .

�15�

Further analysis shows that V has no singularity at the criti-
cal point, e.g.,

FIG. 2. �Color online� Decay of the SP �dashed curves� in the
normal phase of Dicke model. Parameters: �=�0=1, �=10−5, and
�=−10−m with m=6,7 ,8 ,9 ,10,11 from top to bottom. The solid
curve is a fitting curve of the form in Eq. �5�, having an initial
Gaussian decay e−�t2 followed by a 1 /�t decay. The 1 / t decay be-
comes clear with increasing m, i.e., with �� approaching �c. Upper
right inset: �ln M� /�t2 versus � for different pairs of �� , t� with short
t, in agreement with the prediction �����. Lower left inset: ln M
versus ln��1/2t� for �� �10−6 ,10−5� and ln t� �8.6,9.5� in the 1 / t
decay region. �=−10−10; thus, ���	1. The results are in agreement
with the prediction �����1/2.
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sin ka

ek
�sin ka/���� , for �ka� � ����

sin ka/�1 − cos ka , for �ka�  ����� .

�16�

Therefore, Ks in Eq. �6� has no singularity in the vicinity of
�c. For large and fixed N and for �����1 /N, since the cou-
pling strength of V in the eigenbasis of H��� increases with
decreasing ����, Ks should increase slowly with decreasing
����.

Numerical computation of the SP can be done by using
the following expression given in Ref. �8�:

M�t� = �
k0

Fk, �17�

where

Fk = 1 − sin2��� − ����sin2�ekt� , �18�

�� = arctan
− sin�ka�

cos�ka� − �
, �19�

and ek are evaluated at ��. Our numerical computations con-
firm not only the prediction of an exponential decay of the
SP at the criticality, but also some details in the exponent of
M2�t� discussed above �see Fig. 3�, namely, the �2 depen-
dence and the properties of Ks.

As a fourth model, we have studied the XY model �1�,
with the Hamiltonian

H = − �
i

1 + �

2
�i

x�i+1
x +

1 − �

2
�i

y�i+1
y +

�

2
�i

z, �20�

which has critical points �c= �1. As in the Ising chain, in
the low energy region around �c, the XY model has a classi-
cal counterpart with large d. The SP in this model can be
calculated in a way similar to that in the Ising chain dis-
cussed above, and our numerical simulations also confirmed
the semiclassically predicted exponential decay of the SP.

IV. CONCLUSIONS AND DISCUSSIONS

We have shown that the semiclassical theory may be used
in the study of the decay of SP of GSs in the vicinity of those
QPT with infinitely degenerate ground levels at the critical

points. Two qualitatively different decaying behaviors of the
SP have been found for relatively long times: power-law de-
cay in systems with d=1 and exponential decay in systems
with sufficiently large d, where d is the degrees of freedom
of the classical counterpart of the quantum system.

The above results suggest that the SP decay may be useful
in the classification of QPT, an important topic far from be-
ing completely solved, in particular, in the nonequilibrium
regime. Here, we have found two classes: one class with
power-law decay and another class with exponential decay. It
needs further investigation whether other types of SP decay
may appear at QPT, e.g., relatively long-time Gaussian decay
or a decay between power law and exponential.
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